lockerklion.blogg.se

Gravity as curved space activity
Gravity as curved space activity






gravity as curved space activity

If we now rotate our line ever so slightly, how do we know that it does cross the line S after this rotation? In practice, we are always dealing with limited segments of straight lines, and cannot observe the whole of the straight line. Let there be a straight line through point P which is parallel to another line S. Though it seems intuitively true, there was no way of confirming it experimentally. Euclid and many of his followers had misgivings about this Parallel Postulate. Remember that lines are parallel if they lie in a common plane and never cross each other.

  • Through a given point in a plane one can draw one and only one line parallel to a given line in this same plane.
  • Among the five axioms, the most widely discussed is the last axiom which states that It was based on five "obviously true" axioms, out of which a rich collection of 465 theorems were derived (the essential knowledge of geometry).

    gravity as curved space activity

    Euclid, who worked in Alexandria around 300 BC (practically nothing else is known about his life), developed a system of geometry which is still part of our mathematics curricula.

    gravity as curved space activity

    In fact, in the Special Theory of Relativity the spatial part of the four-dimensional space-time is flat (Euclidean). Our ordinary view of space is such that it resembles Euclidean geometry.








    Gravity as curved space activity